Milan Stamenković, Marina Milanović, Vesna Janković-Milić

DOI Number
First page
Last page


Starting from the fact that pronounced differences in the level of development of regions within a particular country can have a serious and significant (negative) impact on its socio-political stability, as well as the performance of the national economy as a whole, it is very important to create conditions for ensuring balanced and sustainable regional development. Due to its pronounced multidimensional nature, the analysis of regional economic disparities is a very complex and statistically demanding task. In this paper, a multivariate methodological framework for the classification of districts in Serbia according to the achieved level of economic development, into internally-homogeneous / externally-heterogeneous groups, based primarily on the application of hierarchical agglomerative clustering procedure and examination of interdependencies between five selected relevant economic indicators, is presented. The statistical validity of the obtained "optimal" classification of districts is additionally tested and confirmed with the results of one-factor multivariate analysis of variance. The resulting categorization clearly and unequivocally confirms the presence of pronounced inequalities regarding the achieved level of economic development between NUTS 3 level territorial units in Serbia, and the existence of regional economic polarization, primarily in direction "developed north – undeveloped south".


multivariate statistical analysis, cluster analysis, MANOVA, economic disparities, districts.

Full Text:



Aumayr, C. M. (2006). European Region Types: A Cluster analysis of European NUTS 3 Regions. In: Proceedings of the 46th Congress of the European Regional Science Association: "Enlargement, Southern Europe and the Mediterranean", Volos, Greece.

Avram, M. & Postoiu, C. (2016). Territorial patterns of development in the European Union. Theoretical and Applied Economics, XXIII(1): 77-88.

Bojović, J. (2010). Lokalni ekonomski razvoj, priručnik za praktičare [Local economic development, handbook for practitioners]. Belgrade: The Urban Institute.

Brauksa, I. (2013). Use of cluster analysis in exploring economic indicator differences among Regions: the case of Latvia. Journal of Economics, Business and Management, 1(1): 42-45.

Capriati, M. (2005). Expenditure in R&D and local development: an analysis of Italian provinces. ERSA conference papers, ersa05p222, European Regional Science Association.

Goletsis, Y. & Chletsos, M. (2011). Measurement of development and regional disparities in Greek periphery: a multivariate approach. Socio-Economic Planning Sciences, 45(4):174-183.

Istrate, M. & Horea-Serban, R.-I. (2016). Economic Growth and Regional Inequality in Romania. Analele Universitatii din Oradea, Seria Geografie, XXVI(2): 201-209.

Janković-Milić, V., Marković, I. & Igić, V. (2013). Cluster analysis of the districts in Serbia according to social development indicators. In: Proceedings of the 2nd International scientific conference – Post Crisis Recovery, Belgrade Banking Academy & Institute of Economic Sciences, Belgrade, Serbia: 676-693.

Jakopin, E. (2015). Regional drivers of economic growth. Serbian Association of Economists Journal of Business Economics and Management, LXIII(1-2): 99-113.

Krstić, B. & Vukadinović, D. (2011). Determinante konkurentnosti MSPP – pretpostavke za ravnomerni regionalni razvoj [Determinants of SME competitiveness – preconditions for balanced regional development]. In: Proceedings of the XVI Scientific Conference – Regional development and demographic flows of the countries of Southeast Europe (553-568). Niš: University of Niš, Faculty of Economics.

Kurnoga-Živadinović, N. & Sorić, P. (2008). Klaster analiza županija Hrvatske prema sredstvima dobivenim iz programa Evropske unije [Cluster analysis of Croatian counties depending on EU pre-accession fundings]. Proceedings of the Faculty of Economics and Business in Zagreb, 6(1): 193-207.

Kvičalova, J., Mazalova, V. & Široky, J. (2014). Identification of the differences between the regions of the Czech Republic based on the economic characteristics. Procedia Economics and Finance, 12: 343–352.

Lepojević, V., Bošković, G. & Janković-Milić, V. (2015). Klaster analiza pokazatelja razvijenosti opština u Regionu Južne i Istočne Srbije [Cluster analysis of indicators of municipal development in the Region of Southern and Eastern Serbia]. In: Proceedings of the XX Scientific Conference – Regional development and demographic flows of the countries of Southeast Europe (151-162). Niš: University of Niš, Faculty of Economics.

Luczak, A. & Just, M. (2020). A complex MCDM procedure for the assessment of economic development of units at different government levels. Mathematics, 8(1067): 1-17.

Maletić, R. & Bucalo-Jelić, D. (2016). Definition of Homogeneous and Narrower Areas of the Republic of Serbia. Agroekonomika, 45(69): 13-24.

Michaelides, P.G., Economakis, G. & Lagos, D. (2006). Clustering Analysis Methodology for employment and Regional Planning in Greece. MPRA Paper No. 74468.

Miljačić, D. & Paunović, B. (2011). Regional Disparities in Serbia. Serbian Association of Economists Journal of Business Economics and Management, LIX(7-8): 379–389.

Министарство привреде и Национална Агенција за Регионални Развој [Ministry of Economy & National Agency for Regional Development – ME & NARD] (2014). Извештај о малим, средњим предузећима и предузетницима за 2013. годину [Report on small, medium enterprises and entrepreneurship for 2013]. Belgrade: Birograf.

Mohiuddin, S. & Hashia, H. (2012). Regional socio-economic disparities in Kashmir Valley (India) – a geographical approach. Bulletin of Geography. Socio-Econ. Series, 18: 85-98.

Национална Агенција за Регионални Развој [National Agency for Regional Development–NARD] (2012). Извештај о регионалном развоју, 2012 [Report on Regional Development in Serbia for 2012]. Belgrade: NARD.

Народна Скуштина Републике Србије [National Assembly of RS, NARS] (2006). Устав Републике Србије [Constitution of the Republic of Serbia]. Београд: Службени Гласник РС (бр. 98/2006) [Official Gazette of RS (No. 98/2006)].

Polednikova, E. (2014). Comparing regions’ ranking by MCDM methods: the case of Visegrad countries. WSEAS Transactions on Business and Economics, 11: 496-509.

Републички завод за статистику [Statistical Office of the Republic of Serbia, SORS], (2014). Municipalities and Regions in the Republic of Serbia, 2013. Belgrade: SORS.

Rovan, J., Malešić, K. & Bregar, L. (2009). Well-being of the municipalities in Slovenia. Geodetski Vestnik, 53(1): 92-113.

Rovan, J. & Sambt, J. (2003). Socio-economic Differences Among Slovenian Municipalities: A Cluster Analysis Approach. In: Ferligoj, A. & Mrvar, A. (Eds.) Developments in Applied Statistics, Metodološki zvezki, 19: 265-278.

Stamenković, M. & Savić, M. (2017). Measuring regional economic disparities in Serbia: Multivariate statistical approach. Industrija, 45(3): 101–130.

Stamenković, М., Veselinović, P. & Milanović, M. (2017). Demographic resources of Districts in the Republic of Serbia: Cluster analysis approach. ТЕМЕ, XLI(4): 873-897.

Влада Републике Србије [Government of the Republic of Serbia, GRS] (2007). Стратегија регионалног развоја Републике Србије за период од 2007. до 2012. [Regional Development Strategy of Serbia, 2007–2012]. Београд: Службени Гласник РС [Official Gazette of RS].

Влада Републике Србије [Government of the Republic of Serbia, GRS] (2009). Закон о Регионалном развоју [Law on Regional Development]. Београд: Службени Гласник РС (бр. 51/2009 и 30/2010) [Official Gazette of RS (No:51/2009 & 30/2010)].

Vukmirović, J. (2013). Regionalni razvoj kao preduslov za izlazak iz krize [Regional development as a precondition for overcoming the crisis]. Macroeconomic analyses and trends, 219: 39-43.

Winkler, A. (2012). Measuring regional inequality: an index of socio-economic pressure for Serbia. Zbornik radova–Geografski Fakultet Univerziteta u Beogradu, 60: 81-102.



  • There are currently no refbacks.

© University of Niš, Serbia
Creative Commons licence CC BY-NC-ND
Print ISSN: 0353-7919
Online ISSN: 1820-7804