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Abstract 

The aim of this paper is to analyze the influence of the process of adaptation and 

network structure on the final wealth distribution of trading agents. The analysis was 

conducted on an electronic financial market represented by a complex scale-free network. 

In a trading simulation, the flow of information between the network nodes (traders) 

influences the decision-making process in terms of investment. The Widrow-Hoff 

algorithm for adaptation and the size of a complex network are the key aspects of the 

process. The analysis indicated that the ability to adapt the level of self-confidence and 

imitate wealthy agents decreases the effect of increase in the network size and maintains 

the wealth distribution at approximately the same level. Using Pareto’s model, we will 

show a two-fold outcome. On the one hand, the increase in the size of the network and the 

distance between the nodes increases the even distribution of wealth among the wealthier 

traders, and increases the gap between the poorer trading agents. The cause of this model 

behavior can be found in the relatively quick exchange of information between the 

wealthier trading agents, and the slower exchange between the poorer trading agents. This 

behavior is a consequence of the increase in the average distance between the network 

nodes with an increase in the network diameter. The computer model included in the 

analysis was designed in the NetLogo modeling environment, while the statistical analysis 

of the complex network was performed using the Pajek and Origin programs. 
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ДИСТРИБУЦИЈА БОГАТСТВА  
НА ВЕШТАЧКИМ ФИНАНСИЈСКИМ ТРЖИШТИМА 

СА АДАПТИБИЛНИМ АГЕНТИМА 

Апстракт 

Основни циљ овог рада је анализа утицаја процеса адаптације и структуре 

мреже на коначну расподелу богатсва међу агентима трговања. Анализа обухва-

та електронско финансијско тржиште представљено комплексном мрежом без 

скале. Током процеса симулације трговине, ток информација између чворова 

мреже (трговаца) утиче на процес инвестиционог одлучивања. Кључни аспекти 

овог процеса су Widrow-Hoff-ов алгоритам адаптације и величина комплексне 
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мреже. Анализа је показала да процес адаптације нивоа самопоуздања и имита-

ције богатијих агената смањује утицај пораста величине мреже и одржава ди-

стрибуцију богатства на приближно истом нивоу. Коришћењем Паретовог моде-

ла показаћемо две ствари. Са једне стране, повећање величине мреже и растоја-

ња између чворова повећава равномерност дистрибуције богатства међу богати-

јим агентима, и са друге стране, повећава јаз међу сиромашнијим агентима. Уз-

рок оваквог понашања модела лежи у релативно брзој размени информација ме-

ђу богатијим трговцима и споре размене информација међу сиромашнијим тр-

говцима. Ово понашање последица је повећања растојања између чворова мре-

жа са повећањем дијаметра мреже. Коришћени рачунарски модел је имплемен-

тиран у програмском окружењу NetLogo а статистичка анализа комплексне 

мреже у програмима Pajek и Origin. 

Кључне речи:  мреже без скале, вештачка финансијска тржишта, расподела 

богатства 

INTRODUCTION 

In financial markets both the information distribution and the 

investors’ expectations are reflected in the market price of the financial 

instruments. As complex adaptive systems, these markets can be viewed 

as a “dynamic network consisting of interacting agents” (Holland, 1995, 

p. 10). By transferring system elements (trading agents) into nodes and 

interaction into relations, we can formally obtain a network representation of 

any complex system (Boccaletti, Latora, Moreno, Chavez & Hwang, 2006).  

The modern approach to the analysis of economic systems relies 

on agent-based modeling, computer models which simulate certain economic 

occurrences under controlled experimental conditions (Tesfatsion & 

Kenneth, 2006). While groups of trading agents learn about the relations 

between prices and market information, computation agent-based models 

simultaneously emphasize their interactions and the learning dynamics 

within them (LeBaron, 2000). 

The occurrence of scale-free networks was noted in different natural 

and social systems (Barabási, 2012, pp. 14-16). Different approaches to the 

use of scale-free networks were developed for the purpose of financial 

market analyses (Meyers, 2011 and Jiang & Zhou, 2010). The influence of 

the network structure on the price dynamics of the artificial market was 

confirmed in the work of Tedeschi et al. (Bargigli & Tedeschi, 2014; 

Tedeschi, Iori, & Gallegati, 2012; and Tedeschi, Iori & Gallegati, 2009). 

Social interaction along with the imitation of behavior among agents, which 

leads to crowd behavior, has been studied by numerous authors (Alfarano, 

Lux & Wagner, 2005; Kirman, 1993; and Lux & Marchesi, 1999). However, 

a very small number of papers deal with the different individual factors and 

preferences of agents, all of which can be found on actual markets, or their 

influence on the market dynamics represented in the complex network.  
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This paper illustrates the influence of self-confidence of agents on 

the dynamics of the increase/decrease of individual wealth. The wealthier 

(more successful) agents have a higher level of self-confidence and trust 

their investment decisions. Unsuccessful trading agents lose trust in their 

own decisions and tend to imitate their more successful neighboring 

agents (Hoffmann, Jager & Von Eije, 2007). Self-confidence alters during 

trading and depends on success, i.e. the acquired wealth. These variations 

can be seen as an adaptive process. Here, agent adaptation is achieved by 

a change in the level of self-confidence based on Widrow-Hoff learning, 

depending on the change in wealth. Thus, the wealth of trading agents 

influences their investment decisions. We could conclude that agents 

participate in an adaptive investment decision-making process which depends 

on the acquired wealth, level of confidence, preference function, and 

imitation of (or advice from) the nearest most successful trading agent.  

The computer model was implemented in the NetLogo modeling 

environment while the statistical analysis of the complex network was 

carried out in the Pajek and Matlab programs. 

The paper is organized as follows. The second part of the paper 

offers a more detailed description of the trading mechanisms, the artificial 

agents and the structure of the implemented complex network. The design 

of the agent-based artificial electronic financial market is described in the 

third section. The fourth section presents the results of the simulation.  

MODEL FORMATION 

An artificial stock market model (ASM), represented by a scale-

free network, contains four basic elements: agent organization, artificial 

trading agents, agent adaptation, and the mechanism of price formation 

and clearing. 

Trading Agent Organization and Network Structure 

The agents in our model are organized in the form of a complex 

scale-free network with a node structure. A small number of agents (or 

hubs, in the terminology of complex networks) are connected to a large 

number of other trading agents. However, a larger number of agents have 

a small number of neighboring agents (Fig. 1).  
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a) b) 

Figure 1. The scale-free network with 500 nodes – graphic representation 

in Pajek
1
 (a) and degree distribution (b). 

Source: Authors’ calculations 

The construction of the network model begins with the formation 

of two nodes and their interconnection. A node is added at each subsequent 

step. Each new node is then stochastically connected to already created 

nodes, while the probability proportional to the power of the node, i.e. the 

likelihood of its clustering with node i is: 

i
i

j

j

k
p

k



 (1) 

where ki is the power of node i. All the powers of the already existing 

nodes are summed up. The nodes which initially established a greater 

number of connections increase this number based on the principle “the 

rich become richer” (the Matthew effect). In the context of the financial 

market, a new agent on the market will most probably monitor the 

behavior of the best known investor. This is known as “preferential 

attachment” and the networks built around it, such as the Barabási-Albert 

one, are known as scale-free networks (Barabási & Albert, 1999 and 

Albert & Barabási, 2002). The node distribution in such a network has a 

power distribution P(k) ~ k
3

. The average length of the path increases 

logarithmically with the size of the network l ~ ln N/lnln N
 

while the 

clustering coefficient increases following the empirically determined 

distribution power law C ~ N 
0.75

. 

                                                        
1 http://pajek.imfm.si/ 
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Artificial Trading Agents 

In the studied artificial market, the portfolio of each trading agent 

consisted of a certain amount of shares (stocks) and cash (a risk-free 

asset). Only high-risk assets were traded. The decisions made regarding 

investments were based on the optimization of the composition of the 

portfolio during one simulated period, one day ahead. At the beginning of 

the simulation, all the trading agents were allocated a certain amount of 

wealth. In actual markets, wealth distribution is not proportional. Levy 

and Levy (2000) cite that the distribution of wealth is in accordance to the 

Pareto law or Boltzmann’s probability equation. However, most ASM 

models, trading agents, are allocated equal amounts of cash and shares 

with equal wealth distribution. The choice of uniform wealth distribution 

enabled us to study the effect of the structure of a complex network on 

wealth distribution at the end of the simulation. 

The wealth of the trading agent i in the time span t, is given as: 

ttititi psc ,,, 
 

(2) 

where wi,t is the wealth of the agent i at a particular point t, pt is the price 

per share at point t, si,t is the number of shares contained within the 

portfolio of agent i at point t, and ci,t is the amount of cash at point t.  

At the beginning of every simulation period, all of the trading 

agents decided on the amount they were ready to invest in the shares in 

their portfolio, and how much they wished to keep in the form of cash. 

The expected yield of agent i at a point in time t was calculated using the 

following equation: 

),0(~,)( 2

,, ttttiti NdrE 
 

(3) 

where di,t  {1,1}
 
is the path of the agent’s future stock price predictions 

with a probability of probi proportionally to the number of neighboring 

nodes, and it is assigned to all the agents at the beginning of the 

simulation. Agents with a greater number of nodes have a greater 

probability of correctly predicting future price movement. We might say 

that the prediction distribution is in accordance with the distribution of 

the nodes (Radović & Stanković, 2012). 

Agents could not invest their entire assets into shares, keep only 

their cash, or do short-term selling. Some studies have shown that investors 

usually keep from 30% to 55% of their wealth in stocks. Without this 

limitation, a great number of agents could quickly go bankrupt and disrupt 

the model dynamics.  

The size of the trading order indicates that the market depends on 

its utility function. In this paper we relied on the utility function which 

satisfies the Constant Relative Risk Aversion (CRRA) (Petrović, Radović 
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& Stanković, 2011). The utility function determines the portion of the 

wealth the agent is willing to invest further. Generally, in each round of 

trading, based on the predictions of future movement, agents evaluate 

how much their current portfolio composition deviates from the target. If 

they determine that they have more risky instruments, they attempt to sell 

the excess share of instruments with a trading order in the determined 

excess sum. However, if a shortage in the risky instruments was noted, 

the agents exercised a trading order in the amount of the determined 

deficiency. The choice of the utility function of the agent, the prediction 

of the price, and volatility also influenced the demand. 

Imitating The Investment Decisions of Neighboring Agents 

The evaluation of the influence of the complex network structure 

on agent prediction, and thus the distribution of wealth, was introduced 

into the model through the implementation of the imitation of the 

decisions of neighboring agents.  

Inspired by the work of Hoffmann et al. (2007), in our model we 

introduced a level of confidence for the agents, which was used to determine 

the relation between individual anticipations and the anticipation of the 

neighboring agent on the future movement of the share price. The only 

neighboring agent who is “imitated” is the agent with the greatest number 

of nodes. The anticipation in the direction of market movement of agent i 

at a point in time t is given in: 

, , , , ,( ) ( ) (1 ) ( )ind s

i t i t i t i t i tE d conf E d conf E d    
 

(4) 

where confi,t is the confidence level of agent I at point i, E(di,t

ind
)
 
is the 

individual anticipation of the agent i at a point in time t (based on (3)), 

while E(di,t

s
)
  

is the anticipation of the neighboring agent which is visible 

to the agents as the type of order being executed (buying or selling). As 

opposed to Hoffmann et al. (2007), in our model the level of self-confidence 

differs between the agents and fluctuates during the simulation. In addition, 

instead of a uniform distribution, as in the case of Hoffmann et al. (ibid.), the 

original level of self-confidence is individually set based on the power 

interval U [0.43, 0.77].  

Agent Adaptation – the Widrow-Hoff Learning 

Widrow-Hoff learning or delta learning is a gradient adaptive 

procedure during which we adjust the model with each deviation from the 

desired target. The level of confidence during the simulation period is 

modified using the Widrow-Hoff learning rules with momentum 

(Rumelhart, Hinton & Williams, 1986 and Widrow & Hoff, 1960) 
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(5) 

where α is the trading agent’s prejudice set at α = 1, 
 
is the speed of 

change of the level of self-confidence set at  = 1.0, and 
n
Wi,t is the 

wealth change in the selected period (in the used model the selected 

period is the last 15 trading days).  

If the agent’s wealth increases during the studied period (in this 

model it is a period of 15 days), we should expect that its level of self-

confidence will also increase. Otherwise, the agent loses his self-confidence 

and increases his reliance on the neighboring agents.  

The Mechanism for Price Formation and Clearing 

The implemented model of the artificial financial market is based 

on a special electronic financial market, i.e. a so-called crossing network. 

Crossing networks for trading accounts are markets which directly link 

the agents without intermediaries for trading on the stock exchange, 

forming prices using the system of management of the central order book 

(Liebenberg, 2002). The price at which the transaction takes place is not 

formed using a special mechanism for price formation, and is instead 

taken from the primary market. This enables cheaper trading and provides 

independence from continued liquid asset trading.  

The created model is based on the efficient market hypothesis 

(EMH) that individual trading agents are too “small” to influence the 

market trends and the manner in which the price is formed. The use of an 

internal mechanism for price formation in an artificial market with a 

relatively small number of agents disrupts the EMH. As a result, in this 

study we focused on a market model based on the mechanism of price 

formation used in crossing networks. The price of the transaction is 

introduced externally as a stochastic process.  

In the implemented model, the artificial market possesses a type of 

high-risk financial instrument – stocks. Stock return (rt) is formed 

externally as the normal GARCH (1,1) (Bollerslev, 1986): 

2 2 2 2

1 1, (0, ) andt t t t t t tr C N            
 

(6) 

The unconditional variance  
2
 =  / (1    ) is known to all the 

agents and represents the basis for the formation of their anticipation in (3). 

The trading between agents is simulated by a random sample of 

agents with selling orders and agents with buying orders. The size of the 

transaction is formed based on the size of the smaller order, while the agent 

with the remaining order remains within the trading process. 
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THE RESULTS OF THE MODEL SIMULATION 

AND THE DISCUSSION 

The first step in the simulation process is the generation of a 

complex network based on the Barabási-Albert algorithm (Barabási & 

Albert, 1999 and Albert & Barabási, 2002). The number of agents, i.e. nodes 

in a network, is the only parameter which is set in this step. The process of 

designing a network represents an initialization of the trading simulation 

procedure in an artificial market. Based on the network structure, or more 

precisely, the power of each node, the agent is assigned a particular rank in 

the network. The agent (node) of the highest power is assigned the rank of 1. 

According to the power law (the number of connections), the agents are 

assigned probability of the future price path anticipation probi in (3). The 

probability of predicting the highest ranking agents is a parameter model, 

and in our simulation it is set at a value of prob1=0.85. The probability of 

the remaining agents decreases based on their previous rank, and for 

agents of the lowest rank it is slightly higher than 0.5. The prediction 

probability remains constant during the entire simulation process. Similarly, 

the confidence level conf in (4) initially has the highest value for the agent 

of the highest rank. The agent of the highest rank has a level of self-

confidence of conf1=0.77 while the agents of the lowest rank have a 

confidence level of confi=0.43. The confidence level changes dynamically 

during the simulation based on the trading success.  

All of the agents were allocated the same amount of wealth W0 

with an equal share in cash and stocks. To be more precise, at the 

beginning of the simulation, all of the agents were assigned the same 

amount of cash, ci,0 = 100 000 in monetary units and si,0 = 1000 in stocks.  

The artificial market represents an electronic crossing network. 

Considering the fact that the stock price being traded is formed on an 

external market, it is an exogenic variable in the model. At the beginning 

of the simulation, the stock price was set at a value of p(0)=100 monetary 

units. During each step of the simulation, the market contributed to the 

calculations based on (6), with the following parameters: C=0.0016, 

γ=0.0016, α=0.0904, and β=0.8658. The parameters were taken from the 

work of Zivot (2009) and describe the dynamics of the change in the 

stock of the Microsoft (MSFT) company. The trading simulation was 

carried out in 1000 simulation steps (days of trading). The model supports 

various mechanisms for allocating order priority. In this paper, we opted 

for a trading mechanism which provides perfect liquidity. That is, all of 

the orders could be executed.  

In order to analyze the wealth distribution, we relied on the Pareto 

model, which means that in this study a small part of the population 

possesses a larger portion of the wealth. 
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(d) 

Figure 2. The distribution of wealth of the wealthier trading agents  
(red line) and the poorer trading agents (green line) for the various 

network dimensions and adaptations:  
a) a network with 500 agents, without adaptation;  

b) a network with 500 agents, with adaptation;  
c) a network with 5000 agents, without adaptation; and  

d) a network with 5000 agents, with adaptation 
Source: Authors’ calculations 
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Levy and Solomon (1997) state that the number of people with a 

wealth of W in a certain population is proportional to that wealth 

following the Pareto law: 

1( )P W W  
 

(7) 

where α is the Pareto exponent. By accepting the hypothesis that the 

Pareto model of wealth distribution is not ideal (Gonzalez-Estevez, 

Cosenza, Lopez-Ruiz, & Sanchez, 2008 and Radović & Tomić, 2010), in 

our study we divided the chosen population into two parts: a wealthier 

and poorer population. For each of the groups, the Pareto exponent was 

studied individually.  

The calculated values of the Pareto exponents and the graphic 

representation of wealth are shown in Fig. 2. The higher value of the 

exponent indicates a more even distribution of wealth.  

The studied population of agents was organized according to the 

relative change in wealth, from the biggest to the smallest, and thus each 

agent was assigned a position on that list. The Pareto model can then be 

described in the following manner (Levy & Solomon, 1997): 

1

i iAr 


  (8) 

where  is the relative wealth of the agent, r is the position which the 

agent takes on the organized list according to the values of its relative 

wealth, A is the constant, and α is the Pareto exponent. By showing the 

relative values of the change in wealth on the log-log scale, we approach 

an approximate linear dependence.  

The agents were divided into two groups: the first group, with 20% 

of the wealthier half of the agents and the second group with 80% of the 

poorer group of agents. For both groups, we calculated the parameters of 

the linear regression model with the logarithm of wealth in (8). The 

higher value of the Pareto exponent indicates a more equal distribution 

and a sharper decline in the distribution curve. The analysis of the Pareto 

exponent of the wealthier agents (red line) indicates that the Pareto 

exponent increases with the size of the network. 

The influence of agent adaptation in networks with a small number 

of nodes (n=500) decreases the equal distribution of wealth among the 

wealthier group of agents (α=3.424 vs. α=3.092) and increases it among 

the poorer group of agents (α=1.101 vs. α=1.644). However, the 

influence of adaptation in the case of networks with a large number of 

nodes (n=5000) is not that pronounced (α=4.134 vs. α=4.087 among the 

wealthy, and α=1.636 vs. α=1.609 among the poor agents). Previous 

research (Radović & Stanković, 2012) indicates that the equal distribution 

of wealth among the wealthier agents increases with the increase in the 
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size of the network s, and decreases among the poorer agents (a balancing 

effect). In larger networks, the average distance between the poorest and 

the wealthiest agents increases, so that during trading only the nearest 

agents increase their power of prediction and thus their wealth. The 

poorer agents are too distant and their trading is at the level of accidental 

hits, which leads to their unequal wealth distribution. In the adaptation 

process, the poorer agents lose confidence over time, and increasingly 

imitate the more successful ones, neutralizing the influence of distance in 

the network. In smaller networks, the poor agents quickly imitate the 

most successful ones, which leads to an increase in the equal distribution 

of wealth among the poorer agents. However, the wealthiest agents 

modify their level of confidence less frequently, and their increase in 

wealth is related only to their power of prediction.  

CONCLUSION 

Our artificial financial market model had the structure of a 

complex scale-free network with nodes representing the trading agents. 

The ability to predict the future movements of prices is proportional to 

the number of connections. The trading agents with the greatest number 

of connections have the highest level of prediction of the direction of 

market movement. The trading agents with the smallest number of 

connections predict at the level of accidental predictions. All of the agents 

trade on the basis of individual predictions and the predictions of the 

wealthiest nearest neighbor. Confidence in one’s own ability to predict is 

manifested in the level of self-confidence, which increases with the 

increase in an agent’s wealth and decreases with the decrease in their 

wealth. 
In this paper we have shown that the size of the network can 

influence the final distribution of wealth between agents who initially had 
the same amount of wealth. With the increase in the network dimension, 
we see an increase in the equal distribution of wealth among the 
wealthiest agents, and a decrease among the poorest agents. Agent 
adaptation has a balancing effect in networks of greater dimensions, so 
that the wealth distribution among the poorer agents is maintained, while 
it does not change significantly among the wealthier ones. However, in 
the case of networks of smaller dimensions, the equal distribution of 
wealth increases among the poorest agents and decreases among the 
wealthier agents.  
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ДИСТРИБУЦИЈА БОГАТСТВА 

НА ВЕШТАЧКИМ ФИНАНСИЈСКИМ ТРЖИШТИМА 

СА АДАПТИБИЛНИМ АГЕНТИМА 

Огњен Радовић, Јовица Станковић, Ивана Марковић 

Универзитет у Нишу, Економски факултет, Ниш, Србија 

 Резиме  

Велики број природних и друштвених система могу се описате као системи 
састављени од великог броја међусобно повезаних компоненти. Структура ових 
компоненти и веза као и динамике система може се описати комплексним мрежама. 
Чворови мреже одговарају компонентама система а везе између њих релацијама 
међу компонентама. Комплексне мреже могу имати различите структуре. Ком-
плексне мреже које одговарају структури попут Interneta или Weba називамо Scale-
free мрежама. Ове мреже имају мали број чворова са изразито великим бројем веза и 
велики број чворова са малим бројем веза. Природан начин моделирања и симула-
ције система са структуром комплексне мреже је приступ заснован на агент-бази-
раном моделирању. Агент-базирано моделириање (АБМ) омогућује изградњу и си-
мулацију сложених модела са великим бројем хетерогених агената, посебно у 
ситуацијама када се на основу особина појединачних агенате не може предвидети 
понашање целокупног система. АБМ приступ омогућује агентима да интерагују 
међусобно и/или са околином. Овакав приступ је заинтригирао велики број истра-
живача који се баве економским и финансијским моделирањем.  

У овом раду проучавамо утицај структуре сцале-фрее мреже на богатство 
трговаца на електронском финансијском тржишту представљеном комплексном 

мрежом. Основни елементи имплементираног модела су организација агената 
(трговаца), опис агената, адаптација агената и механизам формирања цене. Ве-
штачки агенти организовани су у структуру scale-free мреже и представљни су чво-
ровима мреже. Сви агенти располажу одређеном количином богатства коју чине 
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готовина (cash) и акција (shares). Током симулације, величина богатства се мења 
према успеху у трговању. Моћ предвиђања агената пропорционална је њиховој 
позицији у мрежи. Успех у предвиђању будуће цене утиче на ниво самопуздања 
агената и ниво имитације суседних агената. Процес адаптације агената имплементи-
ран је помоћу Widrow-Hoff механизма учења.  

Резултати симулације показују да се са повећањем величине мреже, дијаметра и 
растојања између чворова утиче на коначну расподелу богатства међу агентима који 
су иницијално имали исто богатство. Са порастом димензије мреже повећава се 
равномерност дистрибуције богатства у групи богатијих трговаца а повећава јаз 
међу сиромашнијим трговцима. Узрок оваквог понашања модела лежи у релативно 
брзој размени информација међу богатијим трговцима и спорој размени информа-
ција међу симомашнијим трговцима као последица повећања просечног растојања 
чворова мреже са повећањем дијаметра мреже. Адаптација агената има уравнотежу-
јући ефекат код мрежа већих димензија тако да се расподела богатсва међу сиро-
машнијим агентима одржава а међу богатијим не мења значајно. Насупрот томе, код 
мрежа малих димензија расте равномерност расподеле богатства међу сиромашни-
јим агентима а опада међу богатијим агентима. Рачунарски модел је имплементиран 
у програмском окружењу NetLogo а статистичка анализа комплексне мреже у 
програмима Pajek и Matlab. 


