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Abstract

The global COVID-19 pandemic has shaken the global economy, not sparing the
cryptocurrency market. In this paper, we investigate the impact of the COVID-19
pandemic on the dynamics of log returns of the Ethereum. The observed period is
divided into three parts: the pre-pandemic period, the pandemic-induced shock, and
the period after the pandemic-induced shock on the cryptocurrency market. The
research focuses on the impact of the pandemic on the degree of non-linearity and
multifractality of log returns. To assess the degree of non-linearity, we used the BDS
test and the value of the largest Lyapunov exponent. For multifractality, long-range
correlations and information efficiency, we used MF-DFA (Multifractal Detrended
Fluctuation Analysis). The research results show that all observed periods have a
pronounced non-linearity, but that there is no evidence of the existence of low-
dimension chaos. Also, based on the results of the MF-DFA analysis, we conclude
that the COVID-19 pandemic has significantly affected the long memory of the log
returns of the Ethereum; however, their dynamics and characteristics are returning to
the trends present before the pandemic.

Key words: COVID-19, cryptocurrency market, multifractality, chaos, market
efficiency.

E®EKTHU KOBU/I-19 TIAHAEMHUJE
HA MYJITH®PAKTAJIHOCT U AYTOPOYHY MEMOPUJY
INPUHOCA ETHEREUM-a

Ancrpakrt

I'mo6anna mannemuja KOBU/-19 y30ypkana je riobanHy €KOHOMH]Y, 1a U Tp-
JKUIITE KPUIIOTOBATyTa HHje Omiro momreheHo. Y oBOM paxy HCTpaxyjeMo YTHIA]
KOBU/I-19 mannemuje Ha AMHAMUKY Jioraputamckor npuHoca Ethereum-a. ITocma-
TpaHM MEPUOJ MO/EIbEH je Ha TPH JieNa: MepHo/ e MaHIeMuje, TIEPUOJ II0Ka KOjH je
M3a3aH IaHJSeMUjOM W NEepHOJ HAKOH IIOKa HM3a3BaHOr MAHAEMHjOM Ha TPXKHUIITY
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KpPHUITOBAITyTa. AKIIEHAT HCTPaXKMBarba je Ha YTHIAjy MaHAEMHje Ha CTeIleH HelInHe-
apHOCTH U MYJNTH(PAKTAIHOCTH IpPUHOCA. 3a MPOLCHY CTEIeHa HEJMHEapHOCTH KO-
puctrim cmo BDS tect u BpenHocT HajBeher JIanmyHOBIbEBOT €KCIIOHEHTA. 3a MYJITH-
(pakTaTHOCT, TYTOpOYHE Kopemnalyje 1 HHPOpMannuoHy epHUKacCHOCT KOPUCTHIA CMO
MF-DFA (Multifractal Detrended Fluctuation Analysis). Pesynrati uctpakuBamba
MOKa3yjy Ja CBH IOCMAaTpaHH MEPUOAN UMajy U3pasuTy HEMHEApHOCT, alu Ja HeMa
J0Ka3a O IMOCTOjamy HHUCKOAMMEH3HOHAIHOT Xaoca. Takohe, Ha OCHOBY pe3ynTaTa
MF-DFA ananmuse 3axkibyudyjemo na je mangemuja KOBU/I-19 3nauajHO yTumnana Ha
JOyTOpPOYHY MEMOpHjY JIorapuTaMckux mpuHoca Ethereum-a. Mehytum, muxosa au-
HaMHKa ¥ ocoOuHe Bpahajy ce TpeHJOBHMa IIPUCYTHHM IIpe TTaHIeMuje.

Kibyune peun: COVID-19, TpxxuinTe KpUunroBanyTa, My aTH(QPAKTATHOCT, Xaoc,
TPIKHIIHA €PUKACHOCT.

INTRODUCTION

Cryptocurrencies are privately-issued digital money based on a de-
centralised network relying on blockchain technology. It is a system that
is independent of monetary authorities, where the security of cryptocur-
rencies is based on the security of the algorithm that monitors all transac-
tions. Since the appearance of Bitcoin, as the first successful implementa-
tion of the concept of a decentralised money transfer system (Nakamoto,
2009), the cryptocurrency market has been continuously developing. The
cryptocurrency market is significantly different from traditional markets
because it can be transacted 24 hours a day, there is no limit to the fluctu-
ation range, and the barrier to entry is low (Cheng, Liu, & Zhu, 2019).
Cryptocurrency users increasingly treat their investments as a speculative
financial asset rather than a means of payment (Glaser, Zimmermann,
Haferkorn, Weber, & Siering, 2014; Elliott & de Lima, 2018). Low barri-
ers to market entry allow the presence of a large number of inexperienced
investors (outsiders), whose behaviour can be irrational (susceptible to
rumours, emotions, etc.), which, along with market immaturity, can lead
to its inefficiency. Cryptocurrency markets are subject to oscillations,
with episodes of extreme volatility. Financial markets can react to natural
disasters, crises, terrorist attacks and epidemics. One such event is the
COVID-19 pandemic (Goodell, 2020). Due to the rapid spread of the
coronavirus around the world, the World Health Organization officially
declared the beginning of the pandemic on 11 March 2020. Concerns
about the transmission of the coronavirus, and uncertainty about the dura-
tion and the economic consequences of the pandemic have affected peo-
ple’s economic behaviours. In conditions of uncertainty, people generally
react more to public information and follow the behaviour of the majori-
ty, which can also reflect on market trends in the form of herd behaviour.
Repeated patterns of behaviour among investors on the market can lead to
a rise in volatility, speculative bubbles and crashes.
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The smallest cryptocurrencies follow the largest, which indicates
that investors base their decisions on the performance of the leading cryp-
tocurrencies (Vidal-Tomas, Ibafez, & Farinos, 2019). Bitcoin is still the
dominant cryptocurrency that, along with Ethereum, accounts for the
largest share of the total market capitalisation on cryptocurrency markets.
Launched in 2015, Ethereum is a special Blockchain, with a special token
called Ether (ETH symbol in exchanges). While Bitcoin is only a pay-
ment network, Ethereum is programmable technology for building apps
and organisations, holding assets, transacting and communicating without
being controlled by a central authority (www.ethereum.org). In late 2022,
the share of Bitcoin in total market capitalisation was around 39%, and
Ethereum’s was around 19%. (Coinmarketcap, 2022). The duration of the
Covid-19 pandemic brought about the need to assess how it affected cryp-
tocurrency market dynamics. Research by Naeem, Bouri, Peng, Shahzad
& Vo (2021) shows that the COVID-19 pandemic has had negative ef-
fects on the efficiency of leading cryptocurrencies. Danylchuk et al.
(2020) applied fractal and entropy analysis to simulate the cryptocurrency
market, and concluded that the cryptocurrency market has indeed reacted
to the COVID-19 crisis, but that pre-pandemic trends are returning.
Lahmiri & Bekiros (2021) found that the level of stability in cryptocur-
rency markets significantly dropped during the pandemic, and that they
showed greater instability and more irregularities during the COVID-19
pandemic compared to international stock markets. Using asymmetric
multifractal detrended analysis, Kakinaka & Umeno (2021) investigated
the market efficiency of major cryptocurrencies during the COVID-19
pandemic, and found that they showed stronger multifractality in the short
term, but weaker multifractality in the long term. A study on the level of
efficiency of the cryptocurrency market before and after the COVID-19
pandemic based on multifractal analysis showed a positive impact of
COVID-19 (Mnif, Jarboui & Mouakhar, 2020). Diaconasu, Mehdian &
Stoica (2022) used abnormal returns and abnormal trading volumes
methodologies to find that the efficiency of Bitcoin increased during the
pandemic, thus turning this stressful period into an advantage for this
cryptocurrency. Wu, Wu, & Chen (2022) showed that the Bitcoin market
kept efficient during the pandemic, had a similar efficiency to spot gold,
and was more efficient than Ethereum, Binance Coin, and the S&P 500
were during the pandemic. Mnif, Salhi, Trabelsi, & Jarboui (2022) ap-
plied multifractal analysis to quantify the impact of the spread of COVID-
19 on gold-backed cryptocurrencies, and found the presence of herd be-
haviour, but at a lower level than in the case of the Bitcoin market. Assaf,
Bhandari, Charif, & Demir, E. (2022) investigated long-memory behav-
iour in cryptocurrency returns and their fractal characteristics. The au-
thors found a change in long-range correlation for most cryptocurrencies,
with a noticeable downward trend in persistence after the 2017 bubble,
and then a dramatic drop after the outbreak of COVID-19.
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The largest number of studies deals with the study of Bitcoin dy-
namics, and a small number with other cryptocurrencies (Corbet, Lucey,
Urquhart, & Yarovaya, 2019). In this research, we choose to study the re-
turns of Ethereum as the second cryptocurrency by market capitalisation.
Accordingly, the aim of the paper is to test the multifractality and long-
term memory of Ethereum returns, proceeding from the assumption that
the COVID-19 pandemic had an impact on the dynamics of the time se-
ries of cryptocurrency returns. The paper is organised as follows. After
the introduction, the second part of the paper gives a theoretical overview
of the used methodology. The third part of the paper presents the research
results, and the final part summarises our conclusions.

METHODOLOGY

The research focuses on the impact of the pandemic on the degree
of non-linearity and multifractality of the log return. Tsallis entropy
(TsEn) is one of the indicators of critical phenomena in complex systems,
and represents a measure of orderliness, uncertainty and randomness of
time series. We used the value of the TsEn indicator to separate the ob-
served period into three segments: the period before the pandemic, the pe-
riod of the pandemic-induced shock, and the period after the pandemic-
induced shock on the cryptocurrency market. To assess the degree of non-
linearity, we used the BDS test, Hurst exponent, and the value of the larg-
est Lyapunov exponent. For multifractality, long-range correlations and
information efficiency, we used MF-DFA (Multifractal Detrended Fluc-
tuation Analysis).

BDS Test

The BDS test (Brock, Dechert, Lebaron, & Scheinkman, 1996) is
applied to identify non-linear serial dependence in time series. Due to the
apparently random numbers, the series can give the impression of white
noise. In that case, the non-linear pattern can remain hidden. In order to gain
insight into the behaviour of such time series, it is important to detect non-
linear hidden patterns. The BDS test is essentially a statistic based on the
correlation integral, which measures how many times a pattern repeats itself
in the data. Before testing for non-linearity, a simple linear dependence, or
certain daily seasonality in the data is filtered out. For X:, where t=1,2,...,T-m
data m-histories are defined as X {* = (x¢, Xp41, .-, Xp—me1)- THE
correlation integral at embedding dimension m is computed as (Gunay &
Kaskaloglu, 2019):

1
Cmle) = (T —m+ 1(T — m))z L O, x5 1)

vt.s
)
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where I.(x", xI") is an indicator function that equals one if [|x{" — x| < e,

and zero otherwise. According to Brock, Dechert, Lebaron, & Scheinkman
(1996) the BDS test statistic follows as:

(Cm,r(e) —C,T(H™)

Gm.r

W, r(e) =T )

where o is the standard deviation of the sample data.

Tsallis Entropy

Entropy represents a measure of orderliness, uncertainty and random-
ness of time series. Financial time series can rarely be described as a stochastic
process with a Gaussian probability density function. Distributions are often
elongated with the so-called heavy tail due to the existence of extreme values.
Tsallis entropy, which is often called non-extensive or non-additive entropy,
simply describes a system with a long memory and is effective in detecting
tails in the obtained data entropy distributions. The entropy presented by
Tsallis (1988) is based on a generalisation of the Shannon entropy and is de-

fined as follows:
k n
5q=m(1—zpf> 3

i=1

where Kk is a positive constant, n is the number of microstates in the system, p;
probabilities that correspond to microstates and meet the condition X7, p;=1.
The number ¢ € R represents an entropic index that describes a system with
non-extensive properties and is used to characterise the degree of non-
extensivity of the system. For continuous probability distributions, the entropy

is computed as:
__1 4
Sq = | (1 —jf(x)qu)

where f(x) is the probability density function. When q <1, it indicates rare
occurrences; when ¢q>1, it indicates recurring occurrences, and q—1
reduces Tsallis entropy to Shannon entropy. High entropic index values can
be considered a long memory parameter because they occur when there is a
long-term relationship between states in the system (Danylchuk et. al., 2020).

Lyapunov Exponents

The assessment of the properties of non-linear dynamic systems and
the presence of low-dimensional chaos in the data can be performed using
Lyapunov Exponents. These exponents represent a quantitative measure of
the system’s chaotic behaviour, that is, they measure its sensitivity to initial
conditions. Chaos produces a certain loss of information in the initial phase,
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which can explain the complex behaviour of real systems. Calculating the
largest Lyapunov exponent makes it possible to distinguish deterministic
chaos from ‘noise’ caused by random external influences. In a chaotic system,
the distance between two initially close points increases exponentially. The
change in distance over time d(t) is shown by the following formula:

d(t) = Cett, (5)

where C is a constant that normalises the initial separation, and A is the Lya-
punov exponent. For an n-dimensional system, there are n different values of
the Lyapunov exponent. If x.1 = f(x,), t € T, X € R", Lyapunov exponents can
be defined as (Wolf, Swift, Swinney, & Vastano, 1985):

A= }Elal‘j%loge||ft—1.ft—z... Joll: (6)

where J is a Jacobian matrix of partial derivatives for the map f.

If the largest Lyapunov exponent has a value greater than zero, it indi-
cates a deterministic chaotic behaviour of the system. A positive Lyapunov
shows the average rate at which the distance between two close points grows
exponentially. A negative value indicates a stochastic system.

Fractal Analysis and Hurst Exponent

The presence of long memory and the existence of long-range correla-
tions in the observed data is verified by appropriate non-parametric tests.
Hurst (1956) developed rescaled range analysis (R/S), a hon-parametric meth-
odology that measures the intensity of long-range correlations in time series,
and enables the distinction between random and non-random series. The Hurst
exponent is one of the methods for time series analysis with fractal character-
istics. To measure the degree of complexity, we look for a relationship be-
tween how quickly the size changes as the scale decreases. The self-similarity
of a fractal time series can be described by the value of the fractal dimension.
The law that establishes the relationship between the magnitude of the change

and the scale is the power law, which is shown by the following relation:

y~x?, ()

where D represents the fractal dimension.

The multiscale method is based on the correlation of multifractal analy-
sis and the Hurst exponent. The multifractal spectrum identifies deviations of
the fractal structure in time periods with large and small fluctuations. Kantel-
hardt et al. (2002) developed a method for multifractal characterisation of non-
stationary time series, which is based on a generalisation of detrended fluctua-
tion analysis (DFA). Multifractal detrended fluctuation analysis (MF-DFA)
estimates the multifractal spectrum of time series by estimating the multifrac-
tal spectrum of power law exponents. According to Kantelhardt et al. (2002)
the generalised multifractal DFA (MF-DFA) procedure involves the following
five steps.
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In the first step, the ‘profile’ or cumulative sum Y(i) is identified as
follows:

v, EZ[XR @], i=1..N ®)
k=1

where xi is the time series of length N, and (x) is the mean value of the
entire series.

The second step involves dividing the profile Y; into non-overlapping
segments of equal length s. In order not to ignore the parts of the series that
remain due to the divisibility of N with time scale s, the same procedure is
repeated from the other end. Thus, 2Ns is obtained.

The next step estimates the local trend of the segments using the

least-square fitting polynomial y, (i) for each segment of length v:

Fi(s,v) = %Z{Y[(v —Ds+i] -y}, forv=1,..,N (9
i=1

and
s
1
Fi(s,v) = ;Z{Y[N — (v —Ng)s + il — y, (D}, forv = Ngyy, ..., 2N;. (10)
i=1

Local trends are removed in all segments, and the trend removal
process is repeated for different values of s.

In the fourth step, the average for all segments is calculated to ob-
tain the fluctuation function of the g-th order (q = 0):

2N, 1/q
1
Fy(s) = {WZW(S. vnw} (11)

v=1

Fq(s) depends on DFA of order m, and is defined only for s>m + 2.
To see how the generalised g-dependent fluctuation functions Fq(s) depend
on the time scale s for different values of g, steps 2 to 4 are repeated for
several time scales s.

Finally, the scaling behaviour of the fluctuation functions is deter-
mined by analysing the log-log plots Fq(S) versus s for each value of g.
Fq(s) grows as a power-law:

Ey(s) ~ s(@. (12)

For stationary time series, h(2) is identical to the Hurst exponent
H, so the function h(q) represents the generalised Hurst exponent (Kan-
telhardt et al., 2002). The DFA method shows long-term correlations of
non-stationary time series, and ignores obvious random correlations that
are a consequence of non-stationarity (Danylchuk et al. 2020). It is signif-
icant for the investigation of multifractality in financial time series. With-
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in MF-DFA, the power-law relation between the g-order RMS (root-
mean-square) is equal to the Hurts exponent of the g-th order (lhlen: 20%2),

If the value of the Hurst exponent is H= 0.5, the observed series is
stochastic, that is, it follows a random walk. If H is in the range 0 < H < 0.5
the observed series shows the existence of antipersistence, generating
reversals much more often than a random walk. Processes are short-range
dependent. When H is in the range 0.5 < H < 1, the observed series is the
trend-resistant time series, and shows a long memory. As multifractality
is associated with the presence of long-memory in cryptocurrency returns
data, it opposes the efficient market hypothesis (EMH) in finance theory.

Based on the Hurst exponent, the inefficiency index can be defined
as follows (Gu, Shaob & Wang, 2013):

Inffldx = |H(2) — 0.5], (13)

where H(2) is the Hurst exponent calculated by the MF-DFA method when ¢
= 2. IfH(2) > 0,55 or H(2) < 0,45 then we assume that the market is inefficient.

RESULTS AND DISCUSSION
Data and Descriptive Statistics

In this paper, we use the hourly closing prices of the Ethereum
cryptocurrency in the interval between 6 January 2019 and 17 January
2022 (data source: Coinbase). The interval is divided into three parts:
Ethereum price trend before Covid-19 (symbol ETH-Pre-Covid19, from
06/01/2019 to 16/3/2020, 10461 observations), Ethereum price trend dur-
ing Covid-19- induced shock (symbol ETH-Covid19, from 16/3/2020 to
24/5/2021, 10440 observations), and Ethereum price trend after Covid-
19-induced shock (symbol ETH-Post-Covidl9, from 24/5/2021 to
17/1/2022, 5713 observations). We use logarithmic returns on prices in
our analyses. For the sake of comparison, some tests show the results for
the white noise series — WNOISE. A graphic representation of the ob-
served series is shown in Figure 1. A graphical representation of the log
return of each series is given in Figure 2.

Price - log return Ethereum
T
ETH-Pre-Covid19 ETH-Covid19

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Figure 1. Graphic presentation of Ethereum price and return trends
Source: Authors’ calculations
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Summary statistics are given in Table 1. The results of the Jarque-
Bera test statistic reject the null hypothesis of normality of the distribution of
log returns for all observed series. Also, all unit root and stationarity tests
show that log returns are stationary for all series. All observed series have a
significantly negative coefficient of skewness, but for ETH-Post-Covid19 it
is not significantly large. The kurtosis value is significantly higher than 3 for
all observed series, but the value for the period before Covid-19 (ETH-Pre-
Covid19) is extremely high. Based on the presented tests, we can conclude
that none of the observed series have a normal distribution of log returns.

Table 1. Summary statistics of the hourly log returns
of ETH-Pre-Covid19, ETH-Covid19 and ETH-Post-Covid19.

Pre-Covid-19 COVID-19 Post-COVID-19
Observation 10461 10440 5713
Descriptive statistics
Mean 0.000 0.000 0.000
Median 0.000 0.000 0.000
Maximum 0.164 0.081 0.070
Minimum -0.241 -0.148 -0.087
Std. Dev. 0.010 0.011 0.010
Skewness -1.672 -0.765 -0.152
Kurtosis 74.721 14.787 8.588
Nonnormality test
Jarque-Bera (CV=5.9433) 2246959.000 61450.100 7455.438
p-val 0.000 0.000 0.000
Unit Root tests
Augmented Dickey-Fuller test statistic -105.854 -75.382 -74.560
p-val 0.000 0.000 0.000
Phillips-Perron test statistic -106.017 -103.119 -74.560
p-val 0.000 0.000 0.000
KPSS-Kwiatkowski-Phillips-Schmidt-Shin 0.204 0.047 0.120
Random Walk hypothesis

Variance Ratio Test 2.000 1.667 0.686
p-val 0.170 0.331 0.934
Rank Score Variance Ratio Test 8.728 5.876 1.969
p-val 0.000 0.000 0.135
Sign Variance Ratio Test 9.360 8.365 3.946
p-val 0.000 0.000 0.001

Source: Authors’ calculations

Table 2 shows the results of the ARCH test. The ARCH test exam-
ines the existence of volatility clustering (heteroscedasticity) in time se-
ries. The results of the test strongly reject the null hypothesis of no vola-
tility correlation in all observed periods. The clustered volatility (clus-
tered) and persistence are much more pronounced during the pandemic.
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Figure 2. Graphic presentation of price and return trends:
a) Pre-Covid19 b) Covid_19 and c¢) Post-Covid19.

Source: Authors’ calculations
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Table 2. Results of the ARCH test on data heteroskedasticity.

ARCH
(CVv=18.3070)
Stat p-val
Pre-Covid-19 858.806 0.000
Covid-19 1091.271 0.000
Post-Covid-19 219.073 0.000

Source: Authors’ calculations

Figure 3 shows the CDF (Cumulative distribution function) of ab-
solute normalised log returns. Power-law distribution of tails is clearly
observed for all observed periods. The widest range of scaling was in the
period before the COVID-19 pandemic, and the narrowest in the period
after the pandemic shock.

10° v

ETH-pre-covid19
ETH-covid19
ETH-post-covid19
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Figure 3. Cumulative distribution of normalised absolute log-returns
for Ethereum
Source: Authors’ calculations

Table 3 shows the values of parameters o and xmi, calculated ac-
cording to the procedure described by Clauset, Shalizi and Newman
(2007). The table shows the results for the distribution of positive returns
a (+), negative returns o (-), and the range between the slopes of positive
and negative returns (Range=|a (+)-a (-)|). The difference between the
negative and positive tails of the distribution during the pandemic is very
small, indicating a relative uniformity of positive and negative events.
The difference between the negative and positive tail after the pandemic-
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induced shock is significantly higher than the difference in the pre-
pandemic period. During the observed period after the pandemic, nega-
tive events are dominant, in contrast with the period before the pandemic.

Table 3. Power law parameters. (+) and (-) indicate coefficients
for positive log returns and negative log returns, respectively.

Power Law distribution
(P(X) ~ X for X >= Xmin)

o Xmin o (+) Xmin(+) o (') Xmin(') Range
Pre-Covid-19 341651 1.65648 3.58361 1.65648 3.30347 1.86590 0.28014
Covid-19 3.21486 1.21891 3.23549 1.16953 3.20581 1.27852 0.02968

Post-Covid-19 3.53977 1.38137 3.13618 1.04362 3.56085 1.34977 0.42467
WNOISE 5.12818 1.47546 4.60354 1.30508 4.50117 1.27456 0.10237
Source: Authors’ calculations

Tests for Non-linearity and Chaos

The results of the non-linearity check on the Ethereum market in
all observed periods were obtained using the BDS test. The results are
shown in Tables 4, 5 and 6. In all combinations of embedding dimension
(m=2...6) and epsilon (s=0.5, 1.0, 1.5, 2.0), the null hypothesis of linear
dependence of log returns is rejected (p-val=0.000) for all observed peri-
ods. The BDS test clearly suggests that the Ethereum market is character-
ised by a non-linear dependence structure. These results provide strong
evidence against the 11D assumption of returns on efficient markets.

Table 4. BDS results for ETH-Pre-Covid19

ETH-Pre-Covid19 BDS-Non-linearity test
m s=0.5 s=1.0 s=1.5 s=2.0
2 0.020 0.026 0.018 0.010
3 0.026 0.049 0.039 0.024
4 0.022 0.065 0.058 0.039
5 0.016 0.073 0.076 0.055
6 0.012 0.075 0.090 0.068

Source: Authors’ calculations

Table 5. BDS results for ETH-Covid19

ETH-Covid19 BDS-Non-linearity test
m s=0.5 s=1.0 s=1.5 $=2.0
2 0.020 0.029 0.023 0.014
3 0.024 0.055 0.051 0.035
4 0.020 0.071 0.077 0.058
5 0.015 0.076 0.097 0.080
6 0.010 0.075 0.112 0.099

Source: Authors’ calculations
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Table 6. BDS results for ETH-Post-Covid19

Post-Covid-19

BDS-Non-linearity test

m $=0.5 s=1.0 s=1.5 5=2.0
2 0.015 0.017 0.014 0.009
3 0.021 0.029 0.030 0.021
4 0.020 0.032 0.041 0.032
5 0.017 0.031 0.050 0.044
6 0.013 0.028 0.055 0.055

Source: Authors’ calculations
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Figure 4. Largest Lyapunov exponent (1)
Source: Authors’ calculations

Table 6. Largest Lyapunov exponent (1)

Largest

Lyapunov Amax
exponent

Pre-Covid-19 0.11807
Covid-19 0.18133
Post-Covid-19 0.17459
WNOISE 0.24539

Source: Authors’ calculations
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As we mentioned earlier, the largest Lyapunov exponent (LLE) is
used to estimate the chaos in the observed time series. The results of the
LLE calculation, based on the procedure (Mohammadi, 2020a), are
shown graphically (Figure 4) and in Table 6. The calculations show the
existence of a positive Lyapunov exponent in all observed periods. A
smaller value of A in the pre-pandemic period indicates a potentially
greater predictability of returns based on past information. However, the
calculation of the largest Lyapunov exponent for high-frequency financial
time series tends to be larger than the true exponent due to noise. To
overcome this problem, Gencay and Dechert (1992) proposed an algo-
rithm for LLE estimation based on the use of feedforward neural net-
works. The calculation of LLE by this algorithm according to the proce-
dure (Mohammadi, 2020b) is given in Table 7 for overlapping dimen-
sions m from 2 to 6. For all observed series, 1 is negative, so we can re-
ject the null hypothesis of a positive largest Lyapunov exponent, i.e. we
can reject the hypothesis of the existence of low-dimensional chaos.

Table 7. Largest Lyapunov exponent (1) with feedforward neural networks

Largest

Lyapunov m=1 m=2 m=3 m=4 m=5 m=6
exponent (A)

Pre-Covid-19  -0.43754 -0.50558 -0.54127 -0.58009 -0.63549 -0.74441
Covid-19 -0.57014 -0.59477 -0.62820 -0.67290 -0.74558 -0.94951

Post-Covid-19 -0.51328 -0.54867 -0.58901 -0.64918 -0.77071 -
Source: Authors’ calculations

Tsallis Entropy

Tsallis entropy (TsEn) is one of the indicators of critical phenome-
na in complex systems. Figure 5 shows the movement of Tsallis entropy
during the entire observed period. The TsEn indicator shows a rapid de-
cline at the beginning of the pandemic (16/3/2020), and rapid growth on
24 May 2021. Therefore, the value of the TsEn indicator clearly separates
three periods: the period before the pandemic (ETH-Pre-Covid19, from

Tsallis entropy

BTC
AMD
spsoo| |

1 1 1 1
Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020 Jan 2021 Jul 2021

Figure 5. Dynamics of Tsallis entropy from 6/1/2019 to 17/1/2022.
Source: Authors’ calculations
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6/1/2019 to 16/3/2020), the period of the pandemic-induced shock (ETH-
Covid19, from 16/3/2020 to 24/5/2021), and the period after the pandem-
ic-induced shock (ETH-Post-Covid19, from 24/5/2021 to 17/1/2022).

Multifractality

e Hurst exponent for ETH-pre-covid19 (scale=21)
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Figure 6. Hurst exponent (scale=21):
a) ETH-Pre-Covid19; b) ETH-Covid-19; c) ETH-Post-Covid19

Source: Authors’ calculations

In Figure 6(a), we see that the Hurst exponent during the entire period
before the pandemic shows the existence of long-memory (H(2)>0.5). The
beginning and end of the pandemic period is marked by anti-persistence
(H(2)<0.5) (Figure 6(b)). The first half of the observed after pandemic shock
period remains anti-persistent. However, in the second half of the observed
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period, the Hurst exponent indicates long-memory and a return to the domi-
nant behaviour of the period before the pandemic (Figure 6(c)).

Table 8. Results of testing the long-memory.

gg;féj;?? nent H(2) Inffldx Min Hurst Max Hurst  Range
Pre-Covid-19 0.58899 0.08899 0.15792 0.84756  0.68964
Covid-19 0.53732 0.03732 0.22210 0.85997 0.63787
Post-Covid-19 0.53740 0.03740 0.27886  0.79903  0.52017
WNOISE 0.48712 0.01288 0.29810  0.63735 0.33925

Source: Authors’ calculations

The verification of the existence of long-term correlation of re-
turns, and the existence of long-memory for the observed periods is
shown in Table 8. The verification of the existence of long-memory is
based on the estimation of the Hurst exponent using the MF-DFA (Mul-
tifractal detrended fluctuation analysis) method for different scales of the
observed time series (scalemin = 11, scalemax=1024), taking into account
different degrees (q) of the partition function. The table shows the results
for g=2, used to estimate the index of market inefficiency (Inffldx).
Hurst’s H(2) exponent is significantly higher than 0.55, that is, Inffldx is
significantly higher than zero for the period before the pandemic. These
results show that the Ethereum market was inefficient before the pandem-
ic. However, during and after the pandemic, the Hurst exponent does not
show that the Ethereum market behaves inefficiently (H(2)<0.55). Taking
into account the results on the graphic (Figure 3(c)), we can conclude
from the second half of the observed period after the pandemic shock that
the market is returning to the behaviour before the pandemic, i.e.. the
Ethereum market is inefficient.

The Hurst exponent (H(2)) is not sufficient for a multiscale analy-
sis of the complexity of time series. For this purpose, the generalised
Hurst exponent h(q) is used, with degree g belonging to some predefined
range according to the properties of return tails. It can be calculated with
the help of MF-DFA. A measure of time series complexity and multifrac-
tality properties can be found in the Hurst exponent distribution and the
multifractality spectrum (Figure 7).

The width of the multifractal spectrum — Range (Table 8) shows
that the Ethereum market of the period before the pandemic and during
the pandemic shock was significantly less efficient than the market of the
period after the pandemic shock. Also, the spectrum width shows that the
pre-pandemic Ethereum market was less multifractal than was the case
during and after the pandemic shock.
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istribution (Ph) of Ht s Multifractal spectrum (Dh)

a) b)
Figure 7. The probability distribution (a) and multifractal spectrum (b).
Source: Authors’ calculations

CONCLUSION

In this paper, we studied the properties of long-term correlation,
multifractality, and chaotic hourly logarithmic returns of the Ethereum
cryptocurrency. The time period of the analysis is the interval between 6
January 2019 and 17 January 2022, and this interval is divided into three
parts: the period before the COVID-19 pandemic (from 6/1/2019 to
16/3/2020), the period of the COVID-19 pandemic-induced shock (from
16/3/2020 to 24/5/2021) and the period after pandemic-induced shock
(from 24/5/2021 to 17/1/2022). The limits of the interval are determined
by the Tsallis entropy indicator, which has sharp peaks on 16/3/2020 and
24/5/2021.

Based on the results of the ARCH and BDS tests, we can conclude
that Ethereum returns in all observed periods have pronounced heterosce-
dasticity and non-linearity. The research results show that return distribu-
tion corresponds to a power law in all observed periods. The difference
between the negative and positive tails of the distribution of returns dur-
ing the pandemic shock is very small, indicating a relative uniformity of
positive and negative events. In contrast, the difference between the nega-
tive and positive tails is pronounced in the pre- pandemic period and the
period after pandemic shock.

The study of the multifractal and chaotic characteristics of Ethereum
return volatility is based on the use of MF-DFA (Multifractal Detrended
Fluctuation Analysis) and LLE (Largest Lyapunov Exponent) methods.
From the perspective of non-linearity and chaos, returns in the pre-
pandemic period had slightly higher predictability than in the periods dur-
ing and after the pandemic shock. The value of the Hurst exponent H(2) >
0.5, in all observed periods, shows that the Ethereum volatility market has a
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long memory in all periods, which also indicates that the market of Ethere-
um can be predictable based on past data. The dynamics of the Hurst expo-
nent during the entire period before the pandemic show the existence of
long-memory. The beginning and end of the pandemic-induced shock peri-
od was marked by anti-persistence (H(2)<0.5). The first half of the period
after pandemic shock remained anti-persistent. However, in the second half
of the observed period, the Hurst exponent indicates long-memory and a re-
turn to the dominant behaviour of the period before the pandemic. Anti-
persistence is present in the second half of the pandemic shock period and
in the first half of the period after the pandemic-induced shock. However,
the long-memory effect is re-established in the second half of the observed
period after the pandemic-induced shock, indicating that Ethereum’s return
behaviour is returning to pre-pandemic characteristics.

The results of the efficient market hypothesis (EMH) tests are in
line with the results Cheng, Liu & Zhu (2019), Corbet, Lucey, Urquhart
and Yarovaya (2019), Kakinaka and Umeno (2022), and Mnif, Salhi,
Trabelsi and Jarboui (2022) reached in their studies. More specifically,
the non-linearity, non-normality of the return distribution and potential
predictability in all observed periods provide strong evidence against the
efficient market hypothesis.
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E®EKTHU KOBU-19 HAHAEMMUJE
HA MYJITH®PAKTAJIHOCT 1 AYTOPOYHY MEMOPHUJY
INPUHOCA ETHEREUM-a

Jesiena Pagojuuuh, Ormen Pagosuh
Vuusepsuret y Hutry, Exkonomcku dakynrer, Hum, Cp6uja

Pe3ume

KpunroBanyte cy HpUBaTHO-eMOTOBAaHH JIMTHUTAJIHU HOBal] O0a3upaH Ha JICLCHTpaIu-
30BaHOj MpekH H3rpal)eHoj Ha OJIOKYEjH TeXHOIOTHjU. TpIKHIITa KPUIITOBAIYTA CY HOJ-
JIOKHA OCLIJIAIMjaMa, ca emu30JaMa eKCTpeMHE BOJIATHJIHOCTH. [obanHa maHmemuja
KOBU/I-19 y30ypkana je ro0ainHy eKOHOMH)Y, [1a U TPJKHIITE KPUITOBAIyTa HUje OUII0
nomteheHo. Ycrnen Tora je HacTana je motpeda a ce MpOICHH KaKo je TaHIeMuja yTHIa-
Jla Ha TMHAMUKY oBor TpykuiuTa. Hajsehu Opoj uctpaxkuBama 0aBu ce IpOydaBambeM JIH-
HaMHKe OMTKOHMHA, a MaJii Opoj IPYrUM KPUITOBATyTaMa. Y OBOM HCTPKUBAELY OIperie-
JIATM ¢MO ce Na uctpaxumo ytuiaj KOBU/I-19 nannemMuje Ha TMHAMUKY JIOTapPHTaAMCKOT
nprHoca Ethereum—a, kao npyre KpUNTOBaIyTe MO TPXKUIIHO] KAUTATU3AIMjH. AHAIHA3a
je obyxBatuia BpeMeHckH nieproy; m3Mely 6. janyapa 2019. roguse u 17. janyapa 2022.
TOJIMHE, W OBaj MHTEPBAJ je ToJesbeH Ha Tpu aena: nepuon npe KOBU/I-19 mannemuje
(om 06.01.2019. mo 16.03.2020.), mepro] IOKAa HAa TPXKHIUTY KPYNTOBAIyTa M3a3BaHOT
naanemujom KOBU/I-19 (ox 16.03.2020. go 24.05.2021.) u nepuoa moce moka u3a3Ba-
Hor nangemujoM (o 24.05.2021. o 17.01.2022). I'panvie uHTepBaia oapeheHe cy nHau-
karopoMm Tsallis earponuje koja mana 16.03.2020. u 24.05.2021. roauHe JOCTIKE HajBU-
IIe cTeneHe. AKIICHAT HCTPAXXUBAKA je Ha YTHIA]y TTaHAEMH)Ee Ha CTEICH HeITMHEAPHOCTH
U MyITH(PPAKTATHOCTH TIPUHOCA.

Ha ocnoBy pesynrara ARCH u BDS tecroBa Mo)keMo /2 3aKJby4yuMO J1a TIPUHOCH
Ethereum-a y cBuM mocMatpaHMM IMEPHOIMMA HMajy H3PAKEHY XETePOCKSIACTHIHOCT U
HeJMHeapHOCT. Pe3ynraTn neTpakiBama 1oKasyjy [a y CBHM MOCMaTpaHUM IepHOuMa
JIMcTprOyIMja MpUHOCa O/IroBapa CTENIeHOM 3aKkoHy (eHrI. power law). Pasnmuka mmely
HEraTUBHOT ¥ O3UTHBHOT perna AUCTPHOYIHMje IPUHOCA TOKOM IIOKa HA TPXKUIITY YCIe]
HaHJeMHje je BpJIo Maja, IITO yKa3yje Ha pelaTHBHY YjeIHaueHOCT IMO3UTHBHUX M Hera-
THBHUX Joraljaja. Hacynpot Tome, pasinka u3mel)y HeraTHBHOT ¥ HO3UTUBHOT peria u3pa-
JKEeHa je y TeproMMa TIpe 1 MOciie TTaHJEMHjCKOT IIoKa. [IpoyuaBame MynTrdpakTaine u
Xa0TUYHE KapaKTePHCTHUKE MPOMEHJBMBOCTH mprHoca Ethereum 3acHoBaHO je Ha Ko-
pumthessy MFDFA (enr. Multifractal Detrended Fluctuation Analysis) u LLE (eHr.
Largest Lyapunov Exponent) MeToma. M3 nepcrieKTBe HETMHEAPHOCTH M XaOTHYHOCTH,
HPHUHOCH y TIEPHOLY TIPE TTAHAEMHUje Cy MMaJTH HEIlITO BHILY NPEABHIAJBHBOCT HETO y MepH-
0JIMMa TOKOM M HAKOH I1I0KA N3a3BaHOT TIAHAEMHjOM.

Bpenroct XypcToBOr eKCIOHEHTa MoKa3yje [a TpKuIuTe BomarmiHocTy Ethereum-a
MMa [yTOPOYHY MEMOPH]Y y CBUM MEPHO/IMMA, IITO Takole ykasyje na pxwumrre Ethereum-
a Moxe Jia OyJie peABUATBHBO Ha OCHOBY IOfIaTaka u3 npouuiocty. JuHamuka Xypcro-
BOT' €KCIIOHEHTa TOKOM IIEJIOT TMEpHoja Tpe MaHIeMHUje MoKa3yje MOCTOjabe QyropodHe
MeMopuje. [Toyerak u Kpaj epro/a moka o0eIeKiIa je obnacT anTuIep3ucTenimje. ok
je TpBa MOJIOBHHA OCMATPAHOT ITEPHO/IA MOCIe MaHAEMH)CKOT III0OKa 3aJpyKaa aHTHIIep-
3UCTEHTHOCT, Y JIPYTroj MOJOBHHH IEpHojia XypCTOB EKCIOHEHT yKasyje Ha JYTrOpOYHY
MEMOPHjy M TOBpaTaKk Ha JOMHHAHTHO MOHAIIABE Y TIEPUOY Tpe MaHAeMuje. AHTHIIEp-
3UCTEHTHOCT j€ MPUCYTHA y APYroj MOJOBMHU IEPHOAA IIOKA M Y IPBOj MOJIOBHUHHU I10-
CMaTpaHaor Tepro/ia Mocie MaHIeMHUjcKor moka. Mehytum, edekar gyropodHor mamhe-
Ha Ce MOHOBO YCIIOCTaBJba Y APYroj MOJOBHHH NMOCMATPAHOT MEPHO/A MOCHe MaHeMHj-
CKOT ILI0Ka, IITO yKa3yje Ha TO Jia ce MoHamame npuHoca Ethereum-a Bpaha Ha ocoOuHe
npe nepuoza naxaemuje. HenmvHeapHOCT, HEHOPMAIHOCT UCTPUOYLMje TPHHOCA U T0-
TEHIMjaJTHa [IPEIBUUBHBOCT y CBUM ITOCMATPAaHUM TIEPUOMMA TPYIKajy jak T0Ka3 IPOTHB
xurnotese edukacHor Tpyxuira (EMH).



