GREENHOUSE VEGETABLE PRODUCTION IN THE FUNCTION OF SUSTAINABLE AGRICULTURAL PRODUCTION

Tamara Paunović, Blaženka Popović, Radojka Maletić

DOI Number
https://doi.org/10.22190/TEME221209037P
First page
649
Last page
663

Abstract


A significant segment within the sustainable development of agricultural production and economic prosperity is production in controlled conditions, such as production in greenhouses and glasshouses. In the Republic of Serbia, vegetable production is almost entirely concentrated on family farms. Considering the importance of family farms, the subject of this study is a comparative analysis of vegetable production on family farms and vegetable production in greenhouses, as well as open-air vegetable production. In this context, the paper presents two models for optimising the vegetable production structure, using the method of linear programming and the software package LINDO. The first model refers to vegetable production in greenhouses (variant I) and the second one is formulated for open-air vegetable production (variant II). The analysis and solving models have pointed to differences in the optimal sowing-planting structure, in the number of independent variables or vegetables included in models, but also in realised net income, wherein variant I achieves both higher net income per hectare and higher production economy.


Keywords

sustainable agricultural production, vegetable production, family farms, model, optimization

Full Text:

PDF

References


Altieri, M., Nicholls C., & Montalba R. (2016). Technological Approaches to Sustainable Agriculture at a Crossroads: An Agro ecological Perspective, Sustainability, 9(3), 349; doi:10.3390/su9030349

Balwinder-Singh, Humphreys, E., Gaydon, D. S., & Sudhir-Yadav. (2015). Options for increasing the productivity of the rice-wheat system of North West India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer? Field Crops Research, 173, 81–94. http://dx.doi.org/10.1016/j.fcr.2014.11.019

Barnes, A. P., & Thomson, S. G. (2014). Measuring progress towards sustainable intensification: How far can secondary data go? Ecological Indicators, 36, 213–220. http://dx.doi.org/10.1016/j.ecolind.2013.07.001

Bennett, A. B., Chi-Ham, C., Barrows, G., Sexton, S., & Zilberman, D. (2013). Agricultural biotechnology: Economics, environment, ethics, and the future. Annual Review of Environment and Resources, 38, 249–279. http://dx.doi.org/10.1146/annurev-environ-050912-124612

Bošnjak, D. (1997). The application of operations research in crop production, Application of operational research in agriculture, Monograph, PKB Information and Publishing Center, Belgrade, Serbia, 151-173.

Carravilla, M. A., & Oliveira, J. F. (2013). Operations Research in Agriculture: Better Decisions for a Scarce and Uncertain World, AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, 5(2), 37-46. http://online.agris.cz/files/2013/agris_on-line_2013_2.pdf

Ceddia, M. G., Bardsley, N. O., Gomez-y-Paloma, S., & Sedlacek, S. (2014). Governance, agricultural intensification, and land sparing in tropical South America. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7242–7247. http://dx.doi.org/10.1073/pnas.1317967111

Dogliotti Moro, S.; García, M. C.; Peluffo, S.; Dieste, J. P.; Pedemonte, A. J.; Bacigalupe, G. F.; Scarlato, M.; Alliaume, F.; Alvarez, J.; Chiappe, M. & Rossing, W.A.H. (2014). Co-innovation of family farm systems: A systems approach to sustainable agriculture. Agricultural Systems, 126, 76–86. http://dx.doi.org/10.1016/j.agsy.2013.02.009

Doré, T., Makowski, D., Malézieux, E., Munier-Jolain, N., Tchamitchian, M., & Tittonell, P. (2011). Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. European Journal of Agronomy, 34(4), 197–210. http://dx.doi.org/10.1016/j.eja.2011.02.006

Elliott, J., & Firbank, L. (2013). Sustainable intensification: A case for innovation in science and policy. Outlook on Agriculture, 42(2), 77–80. http://dx.doi.org/10.5367/oa.2013.0124

Ferguson, R. S., & Lovell, S. T. (2014). Permaculture for agroecology: Design, movement, practice and worldview. A review. Agronomy for Sustainable Development, 34(2), 251–274. http://dx.doi.org/10.1007/s13593-013-0181-6

Fish, R., Winter, M., & Lobley, M. (2014). Sustainable intensification and ecosystem services: New directions in agricultural governance. Policy Sciences, 47(1), 51–67. http://dx.doi.org/10.1007/s11077-013-9183-0

Flavell, R. (2010). Knowledge and technologies for sustainable intensification of food production. New Biotechnology, 27(5), 505–516. http://dx.doi.org/10.1016/j.nbt.2010.05.019

Hulme, M. F., Vickery, J. A., Green, R. E., Phalan, B., Chamberlain, D. E., Pomeroy, D. E., & Atkinson, P.W. (2013). Conserving the birds of Uganda's banana-coffee arc: Land sparing and land sharing compared. PLoS ONE, 8(2), 1–13. http://dx.doi.org/10.1371/journal.pone.0054597

Jacobsen, S.-E., Sorensen, M., Pedersen, S. M., & Weiner, J. Feeding the world: (2013). Genetically modified crops versus agricultural biodiversity. Agronomy for Sustainable Development, 33(4), 651–662. http://dx.doi.org/10.1007/s13593-013-0138-9

Jordan, N. R., & Davis, A. S. (2015). Middle-way strategies for sustainable intensification of agriculture. BioScience, 65(5), 513–519. http://dx.doi.org/10.1093/biosci/biv033

Khan, M. H. (2011). Integrated livestock-fish production models for livelihood security in north-eastern India. International Journal of Bio-Resources &Stress Management, 2(3), 387–391.

Kovačević, D. (2010). Environmental Protection in Crop and Vegetable production, Monograph. First Edition, Publisher Faculty of Agriculture-Zemun, 1-178.

Kovačević, D., & Momirović, N. (2008). The role of agro-technical measures for weed control in modern concepts of agricultural development. Acta Biologica Yugoslavica (Series G), Acta Herbologica, 17 (2), 23-38.

Krasnić, T. (2004). Model for optimizing the structure of vegetable production. Doctoral thesis. Faculty of Agriculture, University of Novi Sad, Serbia.

Kull, C. A., Carrière, S. M., Moreau, S., Ramiarantsoa, H. R., Blanc-Pamard, C., & Tassin, J. (2013). Melting pots of biodiversity: Tropical smallholder farm landscapes as guarantors of sustainability. Environment, 55(2), 6–16. http://dx.doi.org/10.1080/00139157.2013.765307

Maletić, R., & Popović, B. (2016). Production capacity of family farms in Serbia and EU countries, Teme, Vol. XL, No 2, 807-821. http://teme2.junis.ni.ac.rs/index.php/TEME/article/view/221

Marjanović, V., & Marjanović, M. (2019). Using comparative advantage of the Republic of Serbia in the function of increasing the export effects. Teme, Vol. XLIII, No 2, 489-510. https://doi.org/10.22190/TEME180407030M

Mihajlović, S., & Novković, N. (2009). Logistic model for optimal transport of sugar beet to the sugar factories. Agrieconomica, Novi Sad,(43-44), 54-61

Munćan, P., & Živković, D. (2005). Effect of production structure on family farm size, Chapter in the monograph: Family farms of Serbia in changes, Faculty of Agriculture, Belgrade, Serbia, 188-197.

Novković, N., Mutavdžić, B., & Ivanišević, D. (2013). Development of vegetable production in Vojvodina, Agroznanje, Faculty of Agriculture, University of Banja Luka, 14(2), 261-270.

Nikolić, G. (2014). The organization of vegetable production in Vojvodina, Magister thesis, Faculty of Agriculture, University of Novi Sad, Serbia.

Novković, N., Ilin, Z., & Ivanišević, D. (2011). Model for optimizing the vegetables production. Proceedings of the International Scientific Symposium on Agriculture, Agrosym 2011, Faculty of Agriculture in East Sarajevo and Zemun, Jahorina, Bosnia and Herzegovina, 555-559.

Ogello, E. O., Mlingi, F. T., Nyonje, B. M., Charo-Karis, H., & Munguti, J. M. (2013). Can integrated livestock-fish culture be a solution to East African’s food insecurity? A review. African Journal of Food, Agriculture, Nutrition & Development, 13(4), 8058–8076. Retrieved from http://www.ajol.info/index.php/ajfand/article/view/94601

Oplanić, M., Ilak Peršurić, A. S., Ban, D., & Bertosa A. (2013). Economic and financial analysis of vegetable production in open and protected space, 8th Croatian & 8th International Symposium on Agriculture, Proceedings, 200-204.

Pechrová, M. (2014). Determinants of the farmers’ conversion to organic and biodynamic agriculture. Agris On-Line Papers in Economics and Informatics, 6(4), 113–120. Retrieved from http://purl.umn.edu/196581

Ponisio, L.C.; Ehrlich, P.R. (2016). Diversification, Yield and a New Agricultural Revolution: Problems and Prospects. Sustainability, 8, 1118. doi:10.3390/su8111118

Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596. http://dx.doi.org/10.1093/aob/mcu205

Radojević, V. (2003). Possible effects of irrigation systems implementation in vegetable production, Water Management, 35(3-4), 217-220

Rochecouste, J.-F., Dargusch, P., Cameron, D., &Smith, C. (2015). An analysis of the socio-economic factors influencing the adoption of conservation agriculture as a climate change mitigation activity in Australian dryland grain production. Agricultural Systems, 135, 20–30. http://dx.doi.org/10.1016/j.agsy.2014.12.002

Stamenkovska Janeska, I., Dimitrievski, D., Erjavec, E., Zgajnar, J., & Martinovska‐Stojceska, A. (2013). Optimization of production on vegetable farm in the Republic of Macedonia, Agroeconomia Croatica, 3(1) 1‐8. https://ageconsearch.umn.edu/bitstream/172528/2/1-3.pdf

Stefanović, R., & Stevanović, S. (2005). Development of vegetable production in function of economic strengthening of family farms, Monograph: Family farms of Serbia in changes, Institute of Agroeconomy, Faculty of Agriculture, Belgrade, Serbia, 214-219.

Teixeira, R. F. M., Proença, V., Crespo, D., Valada, T., & Domingos, T. (2015). A conceptual framework for the analysis of engineered biodiverse pastures, Ecological Engineering, 77, 85–97. http://dx.doi.org/10.1016/j.ecoleng.2015.01.002

The Statistical Office of the Republic of Serbia - National accounts 2023 - Annual national accounts: https://publikacije.stat.gov.rs/G2023/HtmlE/G20231274.html

Thornley, J. H. M., &France, J. (2007). Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences, University of Guelph, Canada, 848 pages, ISBN 085199010X.

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264. http://dx.doi.org/10.1073/pnas.1116437108

Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local to global relevance - A review. Field Crops Research, , 143, 4–17. http://dx.doi.org/10.1016/j.fcr.2012.09.009

Vico, G., &Bodiroga, R. (2017). Tools for planning in agriculture – Linear programming approach, Boosting Adult System Education In Agriculture - AGRI BASE, Erasmus+ K2 Action Strategic Partnership.

Vohnout, K. D. (2003). Mathematical Modeling for System Analysis in Agricultural Research, Elsevier Science, USA.

Woods, M. (2014). Family farming in the global countryside. Anthropological Notebooks, 20(3), 31–48.




DOI: https://doi.org/10.22190/TEME221209037P

Refbacks

  • There are currently no refbacks.


© University of Niš, Serbia
Creative Commons licence CC BY-NC-ND
Print ISSN: 0353-7919
Online ISSN: 1820-7804