ESTIMATING PROBABILITY OF DEFAULT IN BANKING SECTOR – THE ACTUARIAL METHOD

Јелена Кочовић, Жељко Јовић, Марија Копривица

DOI Number
https://doi.org/10.22190/TEME190702088K
First page
1499
Last page
1512

Abstract


In countries with insufficiently developed capital market and a bankocentric financial system, the probability of default of banking clients can be estimated using an actuarial method. This method uses historical data from banking portfolios on the cases of debtors’ inability to meet their obligations towards the bank. In order to assess the level of credit risk and to identify its determinants, we calculated default rates by homogeneous groups of business entities as debtors, and by homogeneous groups of banks through the application of the actuarial method on empirical data from the banking sector of the Republic of Serbia. The research results show that there are differences in the level of credit risk, depending on the size of the business entity and its business sector, as well as that the entities with lower earning capacity, higher indebtedness and slower turnover of assets are more inclined to default. At the same time, it is shown that the default rate of bank varies depending on the ownership type, the bank’s size, profitability, capitalization and certain characteristics of its portfolio. The obtained results are the basis for analyzing the credit risk of certain categories of debtors and banks and for selecting variables that will be included in econometric models for assessing the level of credit risk in the banking sector in Serbia.


Keywords

probability of default, actuarial method, credit risk, banking sector

Full Text:

PDF (Cрпски)

References


Almazari, A. A. (2014). Impact of internal factors on bank profitability: Comparative study between Saudi Arabia and Jordan. Journal of Applied Finance and Banking, 4(1), 125-140.

Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. doi: 10.2307/2978933

Altman, E., & Sabato, G. (2007). Modeling Credit Risk for SMEs: Evidence from the US Market. Abacus, 43(3), 323-357.

Basel Committee on Banking Supervision. Credit Risk Modeling: Current Practices and Applications. (1999).

Bellotti, T., & Crook, J. (2013). Forecasting and stress testing credit card default using dynamic models. International Journal of Forecasting, 29(4), 563-574, https://doi.org/10. 1016/j.ijforecast.2013.04.003

Cantor, R., & Hamilton, D. (2006). Measuring corporate default rates. Moody’s Special Comment, November 2006, New York, NY: Moody’s Investors Service.

Credit Suisse. CreditRisk+, A credit risk management framework. (1997).

Engelman, B., & Rauhmeier, R. (2006). Basel II Risk Parameters: Estimation, Validation and Stress Testing, Berlin: Springer.

Hayden, E. (2002). Modeling an Accounting – Based Rating Sistem for Austrian Firms. (doktorska disertacija), Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.5.9852&rep=rep1&type=pdf

Jorion, P. (2011). Financial Risk Manager Handbook. John Wiley & Sons.

Јовић, Ж. (2017a). Анализа детерминанти кредитног ризика у условима изражене информационе асиметрије: пример банкарског сектора Републике Србије [Analysis of credit risk determinants in terms of expressed information asymmetry: the case of the Republic of Serbia]. (докторска дисертација), Преузето са: http://nardus.mpn.gov.rs/ handle/123456789/9421

Jović, Ž. (2017b). Determinants of Credit Risk – The Case of Serbia. Economic Annals, LXII(212), 155-188. DOI:10.2298/EKA1712155J

Nikolić, N., Žarkić-Joksimović, N., Stojanovski, Đ., & Joksimović, I. (2013). The application of brute force logistic regression to corporate credit scoring models: Evidence from Serbian financial statements. Expert Systems with Applications, 40, 5932-5944. https://doi.org/10. 1016/j.eswa.2013.05.022

Nkusu, M. (2011). Nonperforming Loans and Macrofinancial Vulnerabilities in Advanced Economies. IMF Working Paper, WP/11/161, Washington, DC: International Monetary Fund.

Одлука о адекватности капитала банке [Decision on Capital Adequacy of Banks]. Службени гласник РС, бр. 46 (2011), 6 (2013) и 51 (2014).

Одлука о класификацији билансне активе и ванбилансних ставки банке [Decision оn the Classification of Bank Balance Sheet assets and Off-Balance Sheet Items], Службени гласник РС, бр. 4 (2011), 57 (2012), 123 (2012), 43 (2013), 113 (2013), 135 (2014), 25 (2015), 38 (2015), 61 (2016), 69 (2016) и 91 (2016).

Pesola, J. (2007). Financial fragility, macroeconomic shocks and banks' loan losses: evidence from Europe. Bank of Finland Research Discussion Papers, No. 15.

Podpiera, J., & Weill, L. (2008). Bad Luck or Bad Management? Emerging Banking Market Experience. Journal of Financial Stability, 4, 135-148. https://doi.org/10.1016/j.jfs.2008.01. 005

Закон о рачуноводству [Accounting Law], Службени гласник РС, бр. 62 (2013) и 30 (2018).




DOI: https://doi.org/10.22190/TEME190702088K

Refbacks

  • There are currently no refbacks.


© University of Niš, Serbia
Creative Commons licence CC BY-NC-ND
Print ISSN: 0353-7919
Online ISSN: 1820-7804