ДИСТРИБУЦИЈА БОГАТСТВА НА ВЕШТАЧКИМ ФИНАНСИЈСКИМ ТРЖИШТИМА СА АДАПТИБИЛНИМ АГЕНТИМА/WEALTH DISTRIBUTION IN AN ARTIFICIAL FINANCIAL MARKET WITH AGENT ADAPTATION

Огњен Радовић, Јовица Станковић, Ивана Марковић

DOI Number
-
First page
1149
Last page
1163

Abstract


Апстракт

Основни циљ овог рада је анализа утицаја процеса адаптације и структуре мреже на коначну расподелу богатсва међу агентима трговања. Анализа обухвата електронско финансијско тржиште представљено комплексном мрежом без скале. Током процеса симулације трговине, ток информација између чворова мреже (трговаца) утиче на процес инвестиционог одлучивања. Кључни аспекти овог процеса су Wидроw-Хофф-ов алгоритам адаптације и величина комплексне мреже. Анализа је показала да процес адаптације нивоа самопоуздања и имитације богатијих агената смањује утицај пораста величине мреже и одржава дистрибуцију богатства на приближно истом нивоу. Коришћењем Паретовог модела показаћемо две ствари. Са једне стране, повећање величине мреже и растојања између чворова повећава равномерност дистрибуције богатства међу богатијим агентима, и са друге стране, повећава јаз међу сиромашнијим агентима. Узрок оваквог понашања модела лежи у релативно брзој размени информација међу богатијим трговцима и споре размене информација међу сиромашнијим трговцима. Ово понашање последица је повећања растојања између чворова мрежа са повећањем дијаметра мреже. Коришћени рачунарски модел је имплементиран у програмском окружењу НетЛого а статистичка анализа комплексне мреже у програмима Пајек и Оригин.

Кључне речи: мреже без скале, вештачка финансијска тржишта, расподела богатства

 

Abstract

The aim of this paper is to analyze the influence of the process of adaptation and network structure on the final wealth distribution of trading agents. The analysis was conducted on an electronic financial market represented by a complex scale-free network. In a trading simulation, the flow of information between the network nodes (traders) influences the decision-making process in terms of investment. The Widrow-Hoff algorithm for adaptation and the size of a complex network are the key aspects of the process. The analysis indicated that the ability to adapt the level of self-confidence and imitate wealthy agents decreases the effect of increase in the network size and maintains the wealth distribution at approximately the same level. Using Pareto’s model, we will show a two-fold outcome. On the one hand, the increase in the size of the network and the distance between the nodes increases the even distribution of wealth among the wealthier traders, and increases the gap between the poorer trading agents. The cause of this model behavior can be found in the relatively quick exchange of information between the wealthier trading agents, and the slower exchange between the poorer trading agents. This behavior is a consequence of the increase in the average distance between the network nodes with an increase in the network diameter. The computer model included in the analysis was designed in the NetLogo modeling environment, while the statistical analysis of the complex network was performed using the Pajek and Origin programs.

Key words: scale-free networks, artificial financial markets, wealth distribution


Full Text:

PDF (Cрпски)

References


Albert, R. & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47-97.

Alfarano, S., Lux, T. & Wagner, F. (2005). Estimation of agent-based models: the case of an asymmetric herding model. Computational Economics, 26(1), 19-49.

Barabási A.-L. & Albert, R. (1999). Emergence of scaling in random networks. Science, 286 (5439), 509-512. doi: 10.1126/science.286.5439.509

Barabási, A.-L. (2012). The network takeover, Nature Physics, 8(14-16), 14-16. doi:10.1038/nphys2188

Bargigli, L. & Tedeschi, G. (2014). Interaction in agent-based economics: A survey on the network approach, Physica A: Statistical Mechanics and its Applications, 399, 1-15.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang D.-U. (2006). Complex networks: structure and dynamics. Physics Reports, 424 (4-5), 175-308.

Bargigli, L. & Tedeschi, G. (2014). Interaction in agent-based economics: A survey on the network approach, Physica A: Statistical Mechanics and its Applications, 399, 1-15.

Gonzalez-Estevez, J., Cosenza, M. G., Lopez-Ruiz, R., & Sanchez, J. R. (2008). Pareto and Bolzman-Gibbs behaviors in a deterministic multi-agent system. Physica A.: Statistical Mechanics and its Applications, 387 (18), 4637-4642.

Hoffmann, A.O.I., Jager, W. and Von Eije, J.H. (2007). Social Simulation of Stock Markets: Taking It to the Next Level. Journal of Artificial Societies and Social Simulation. [Online] 10 (2). Available at: http://jasss.soc.surrey.ac.uk/10/2/7.html

Holland, J. (1995). Hidden order: How adaptation builds order. Basic Books.

Jiang Z.-Q. & Zhou, W.-X. (2010). Complex stock trading network among investors. Physica A.: Statistical Mechanics and its Applications, 389 (21), 4929-4941.

Kirman, A. (1993). Ants, rationality, and recruitment. Quarterly Journal of Economics, 108 (1), 137–156.

LeBaron, B. (2000). Agent-based computational finance: Suggested readings and early research. Journal of Economic Dynamics and Control, 24(5-7), 679-702.

Levy M. & Solomon, S. (1997). New evidence for the power-law distribution of wealth. Physica A., 242(1), 90-94.

Levy, H., M. Levy & Solomon, S. (2000). Microscopic simulations of financial markets. New York: Academic Press.

Liebenberg, L. (2002). The Electronic Financial Markets of the Future and survival strategies of the broker-dealers. New York: Palgrave MacMillan.

Lux, T. & Marchesi, M. (1999). Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397, 498-500.

Meyers, R. A. (2011). Complex Systems in Finance and Econometrics. New York: Springer Science+Buisiness Media, LLC.

Petrović, E., Radović, O. & Stanković. J. (2011). Uticaj averzije prema riziku na investiciono odlučivanje individualnih investitora [Influence of Risk Aversion on Investment Decisions by Individual Investors]. In Proc. Strategijski menadžment i sistemi podrške odlučivanju u strategijskom menadžmentu [Strategic Management and Decision Support Systems in Strategic Management]. CDROM, 2011, Palić, Serbia.

Radović, O. & Tomić, Z. (2010). The distribution of wealth of 1000 of the world’s richest men before and after the economic crisis. In Proc. International Conference: Challenges of the economic science and practice in the 21st century, (pp. 691-699). Niš: Faculty of Economics.

Radović, O. & Stanković, J. (2012). Information Asymmetry in the Artificial Financial Market Represented by Scale-Free Network. In Proc. MakeLearn (pp.165-174). Celje, Slovenia.

Rumelhart, D., Hinton, G. & Williams, R. (1986). Learning internal representations by error propagation. In: D. Rumelhart & J. McClelland (Eds.), Parallel Distributed Processing, Volume 1: Foundations. Cambridge: MIT Press.

Tedeschi, G., Iori, G., & Gallegati, M. (2012). Herding effects in order driven markets: The rise and fall of gurus. Journal of Economic Behavior & Organization, 81(1), 82-96.

Tesfatsion, L. & Kenneth, J. (2006). Handbook of Computational Economics, Agent-Based Computational Economics. Ed. Elsevier/North-Holland.

Tedeschi, G., Iori, G. & Gallegati, M. (2009). The role of communication and imitation in limit order markets, The European Physical Journal B-Condensed Matter and Complex Systems, 71, 489–497.

Widrow, B. & Hoff, M.E. (1960). Adaptive switching circuits. IRE WESCON Convention record 4, pp. 96-104.

Zivot, E. (2009). Practical Issues in the Analysis of Univariate GARCH Models, In Andersen et al. (Eds.), Handbook of Financial Time Series,(pp. 113-156). Springer Berlin.


Refbacks

  • There are currently no refbacks.


© University of Niš, Serbia
Creative Commons licence CC BY-NC-ND
Print ISSN: 0353-7919
Online ISSN: 1820-7804